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Abstract
For developing a high-fidelity, high-resolution seismic denoising method, we use the
two-dimensional complex wavelet transform (2DCWT) to analyze noise and signals. By
investigating a surface wave’s features and evaluating factors affecting the fidelity of the method,
the best practice for the wavelet transform-based denoising has been established. First, static and
normal moveout correction are applied on shot gathers. Then, 2D CWT is used to attenuate
linear noises. The results demonstrate that the proposed method and practice significantly
attenuate noises and preserve the signal’s amplitudes and frequency band. In addition to
denoising, we also apply the 2D CWT to decompose a seismic image into multiscale images with
different resolutions. Multiscale decomposed images derive more detailed information for
subsurface structures and fault networks. The decomposed images depict sharper structures and
reveal detailed features of faults more significantly than the original images.

Keywords: complex wavelet transform, noise attenuation, multiscale decomposition,
orientation analysis, multiple resolution

1. Introduction

There are many kinds of seismic noise with different char-
acteristics in various surveys. According to the nature of the
noise, they are mainly divided into two types: one is envi-
ronmental noise, which is not related to seismic data and be-
longs to random noise; the other is related to seismic sources
and is recorded in the process of seismic wave propagation,
such as surface waves, refraction waves, multiple reflection
waves, etc. Due to the strong heterogeneity of land explo-
ration, strong surface waves and multiple waves are usually
overwhelmed on seismic profiles. A typical example is the
Ordos Basin, China, where the surface is covered by com-
plex loess and deserts. In the western region of China, the ex-
ploration area is covered mostly by complex surfaces such as
deserts, gravel, Gobi, mountains and loess plateau. The com-

plexnear-surface structure and the accompanyingnoises seri-
ously affect the accuracy of seismic data processing and imag-
ing. Therefore, the development of denoising methods and
processes is important (Li et al. 2012; Zeng et al. 2022).

At present, conventional denoising methods include the
median filter (Liu et al. 2022), F-K filtering, F-X-Y deconvo-
lution (Wang 1999; Zheng et al. 2022) and Radon transform
(Akerberg et al. 2006). These methods have their own ad-
vantages in processing, yet they have their own defects: the
loss of effective signal is inevitable during the process of de-
noising. Compared to the conventional denoising methods,
complex wavelet transform (CWT) (Kinsbury 1999, 2001)
has local and anti-aliasing characteristics, fidelity of forward
and reverse transforms, and translation and rotation invari-
ance, which can help effectively keep signals during the de-
noising process.Wavelet analysis has been developed rapidly
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in the past two decades, and is an important milestone in the
history of Fourier analysis (Wang 2022). The wavelet trans-
form technology has been widely used in signal processing,
image processing, data compression, seismic exploration,
radar, medical CT and MRI imaging, fractal and digital tele-
vision and other scientific and technological fields, and has
become one of the widely used mathematical tools.

Wavelet transform began with short time Furies trans-
form for interrogating seismic signals in the 1980s. Then
1D wavelet transform came into application in science and
engineering in the 1990s and later 2D discrete wavelet trans-
form evolved (Daubechies 1990; Mallat & Zhong 1992).
The straightforward 2D wavelet transform uses tensor prod-
ucts of 1D orthonormal counterparts as wavelet bases and
the same scaling in the vertical and horizontal directions.
2D discrete wavelet transform-based schemes for CT and
MRI have been widely used in enhancing diagnostics by
compressing and segmentation of images. Li et al. (2012)
applied a 2D wavelet clustering method to segment the
renal compartments in an MRI of the human kidney. They
advocated the method as a feasible tool for the automated
perfusion. Since wavelet transform decomposes signals into
multiscales, approximation of signals at a specific scale is
a combination of the approximation and detail at the next
lower scale. The reconstructed signals from different scales
have different resolutions (Addison 2017).

To effectively attenuate any noise depends on the follow-
ing three aspects: (i) selecting the right algorithms suitable
for the purpose, (ii) conditioning data to fit the algorithms
and (iii) a technical flow organized in such a way that not
only arenoises attenuatedbutweak signals are alsopreserved.
Thus, we use 2D CWT to attenuate linear noises related to
thenear surface, such as surfacewaves.Toobtainhighfidelity,
we investigate factors that affect thefidelity of 2DCWTfilter-
ing. The factors include preprocessing for the filtering, static
correction, normalmoveout (NMO) and so on. Then, we es-
tablish a best practice for wavelet transform denoising with
high fidelity.

In addition to noise attenuation, we also use the 2DCWT
to decompose a seismic image into a series of images with
different resolutions. When performing linear noises attenu-
ation, wemainly analyze orientation distribution in the four-
dimensional domain of CWT: x, y, scale and orientation.
According to theory of 2DCWT, scales represent the resolu-
tion. Therefore, by analyzing scale’s features in the transform
domain, we reconstruct images with different resolutions.

2. Two-dimensional complex wavelet transform

In 2D CWT, the 2D complex basis function is the product
of two 1D complex wavelet basis functions (Kinsbury 1999,
2001):

𝜓c (x, y) = 𝜓c (x)𝜓c (y) = (hx + jgx)
(
hy + jgy

)

=
(
hxhy − gxgy

)
+ j

(
hxgy + gxhy

)
. (1)

The signal is not distorted after processing through the
wavelet transform because the wavelet transform itself has
the property of translational invariance. These properties
largelymeet the requirements of seismic data processing: the
2D wavelet transform has better directional resolution and
has the property of anti-aliasing.

The implementations of both forward and inverse 2D
CWT are in a dual-tree structure (Selesnick et al. 2005). The
forward CWT of the 2D seismic data d(t, x) is decomposed
into D(t, x, s,𝜶), where (t, x) are the coordinate vectors of
the original seismic data, separately, s is the scale vector and
𝜶 is the azimuth vector (there are six azimuth components
for each scale).

The 2D CWT transforms the seismic trace data from
the 2D space–time domain to the 4D space: time, space,
scale and azimuth. With increasing the dimension of signal
analysis, the local characteristics of the original signal are
preserved. This ensures that in different stages of processing,
different data spaces are used to study the characteristics dis-
tribution of the wavelet transform domain so as to design the
corresponding denoising parameters to eliminate the noise.

3. Linear noise attenuation by 2DCWT

After the 2D CWT forward transformation, the 2D seismic
data are transformed into 4D space. In this complex wavelet
domain, the data can be filtered by

Dp (t, x, s,𝜶) = Q (t, x, s,𝜶) ∗D (t, x, s,𝜶) , (2)

whereQ is the filter function. The seismic data can be recon-
structed by inverse transformation ofDp.

Figure 1 parts a and b show the shot gathers before and
after denoising, and figure 1c shows the removed noise. The
example demonstrates that the 2DCWT denoising can sup-
press the surface waves significantly.

We apply this method to a 3D foothill survey to demon-
strate denoising effect. The 3D foothill survey is located at
the southern margin of Junggar Basin, China. The area has
large fluctuations and changes in lithology, including four dif-
ferent types of surface seismic geological conditions:

(i) The northern part is covered by farmland Gobi, where
the terrain is relatively flat and the surface is mainly dis-
tributed with loess and conglomerate with a diameter
of 1–5 cm.

(ii) The lowmountain area in which the terrain is relatively
high.

(iii) The central and southern mountainous areas have a
higher terrain, and the surface is covered with loess and
conglomerate with a thickness of 1–25 m.
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Figure 1. Seismic noise attenuation using 2D CWT to elastic synthetic shot gathers. (a) The input synthetic shot gathers. (b) Shot gathers after CWT
denoising. (c) Linear noise removed by 2D CWT.

476

D
ow

nloaded from
 https://academ

ic.oup.com
/jge/article/20/3/474/7091919 by guest on 18 August 2023



Journal of Geophysics and Engineering (2023) 20, 474–482 Teng et al.

Figure 2. Seismic noise attenuation using 2D CWT to field shot gathers. (a) The input field shot gathers. (b) Shot gathers after CWT denoising. (c)
Linear noise removed by 2D CWT.

(iv) The southern high mountain areas are not only high in
terrain, but also have large changes in height difference.

The field data are strangely contaminated by typical sur-
face and ground roll waves, and there is also severe alias-
ing. Owing to the low apparent velocity of surface waves,
these noises can be suppressed well by applying the azimuth
characteristics analysis of 2DCWT.To better distinguish be-
tween signal and linear noise,wefirst use the velocity of signal
to do normalmoveout, and then apply the 2DCWTprocess.
We optimize the combination of the orientations and scales
to effectively suppress the noise.

Figure 2a shows the shot gathers with obvious surface
wave interference. After 2DCWTdenoising, the shot gather
is shown in figure 2b. Figure 2c shows the noise removed by
2D CWT. The results show that the signal-to-noise ratio is
significantly improved after denoising, and the signal is well
preserved.

We then analyze stack results on the gathers after denois-
ing in shot domain. Figure 3a and 3b compares the original

stack section and after denoising. Figure 3c shows the noise
removed. It is notable from the comparison that the overall
signal-to-noise ratio has been significantly improved after 2D
CWT denoising.

4. Multiscale decomposition of seismic image

Seismic images from pre-stack depth migration provide
important information for structural interpretation in the
subsurface. To vividly capture detailed information from
the images, attributes such as similarity (Hasan & Ghas-
san 2014), spectral decomposition (Partyka 2007), fault
detection, etc. have been extracted. Here we apply 2D
CWT to examine images at different scales with different
resolutions.

As described in the previous section, the 2D CWT
decomposes 2D data from the original xy domain into
the 4D domain: x, y, scaling and orientation. The max-
imum number of scales is controlled by the following
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Figure 3. Comparison of seismic stack section before and after 2DCWT denoising. (a) The stack section before denoising. (b) The stack section after
denoising. (c) The noise removed by the 2D CWT (modified fromWang et al. 2021).
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Figure 4. Flowchart for multiscale decomposition of seismic images by using the 2D CWT.

equation:

m = 2N, (3)

whereN is the maximum scale andm is the smallest number
greater than thenumberof samples inbothx- and y-axes since
same scaling is used in both x and y directions.

Ccale 1 has the highest resolution, while scale N has the
lowest resolution. The highest frequency or wavenumber of
scale 1 corresponds to the Nyquist frequency or wavenum-
ber of the input signals. The highest frequency or wavenum-
ber of scale 2 corresponds to half the Nyquist frequency or
wavenumber of the input signals. Therefore, different scales
in the wavelet domain represent different resolution with a
certainwavenumber range. If we reconstruct a 2D imagewith
only one scale from all orientations, the reconstructed image
represents the image in a certain resolution in two dimen-
sions. Therefore, multiscale decomposition can be used to
highlight geological features that responddifferently todiffer-
ent frequency and wavenumber ranges of the seismic signal.
Figure 4 shows the technical process of multiscale decompo-
sition of seismic images using the 2D CWT.

We apply the proposed method to a 3D sand dune survey
to demonstrate multiscale decomposition of seismic image
using 2D CWT. The 3D sand dune survey is located in the
desert area of Tarim Basin, China. The thickness of the near-
surface desert is∼20m. The main processing goal is to char-
acterize geological structures in interested zones, especially
a detailed network of faults. After 3D pre-stack reverse-time
depth migration, we apply the multiscale decomposition on

the depth slice and inline vertical profile of stacked depthmi-
gration.

Figure 5 depicts the depth slices of seismic image af-
ter multiscale decomposition using the 2D CWT method.
The depth is 6000 m. In the image slice, the vertical axis is
crossline direction spanning 8.0 km and the horizontal axis
stands for inline direction spanning 15.0 km. Figure 5a is the
original image produced by pre-stack depth migration. Fig-
ure 5 parts b–g are the decomposed images at scales 2, 3, 4, 5,
6 and 7, respectively.

It can be observed that the structure at the upper middle
(marked by dash circle) showsmore details in scale 5 than in
the original image. As to the structure in themiddle (marked
by the solidoval), the interpreter tracesboundaries of the trap
and calculates the areaof trapping in the image at scale 6more
easily than in original image.

Figure 6 shows the vertical profiles, along the inline lo-
cated in the middle of the survey, after multiscale decom-
position. Each panel corresponds to the slice shown in the
previous figure. The vertical axis is at a depth from 5.0 to
10.0 km and the horizontal axis stands for the crossline di-
rection spanning 8.0 km. Comparing those images, we noted
that the fault marked by the solid oval in the upper part be-
comes clearer and sharper in the image in scale 4 than in the
original.

5. Conclusions

We have applied the 2D CWT to attenuate seismic noises
with high fidelity and to decompose seismic image into
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Figure 5. Multiscale decomposition of seismic image along depth slice at 6000 m from a field dataset. (a) Depth slice at 6000 m from original pre-stack
depthmigration. (b)Depth slice after multiscale decomposition at scale 2. (c) Depth slice after multiscale decomposition at scale 3. (d)Depth slice after
multiscale decomposition at scale 4. (e) Depth slice after multiscale decomposition at scale 5. (f) Depth slice after multiscale decomposition at scale 6.
(g) Depth slice after multiscale decomposition at scale 7.

multiscales. The 2D CWT decomposes seismic data from
the time–space domain into a 4D domain (time, space, scale,
orientation), and has advantages including translation and
the rotation invariant, localization, anti-aliasing and high
fidelity. We have applied the 2D CWT to attenuate linear
noises, such as surface waves, in seismic shot gathers. Ex-
amples demonstrate that 2D CWT attenuates surface waves
significantly with high fidelity.

As forward 2D CWT decomposes 2D signals into the
scale-orientation domain, 2D CWT has been used as a nat-

ural tool to decompose a seismic image into different res-
olutions corresponding to different scales. The resolutions
of decomposed images go from higher to lower as scales
change from 1 to N. The different scales highlight different
structures consisting of certain bands of wave numbers in
two dimensions. Therefore, multiscale decomposed images
derive more detailed information for subsurface structures.
Decomposed images depict sharper structures and reveal
detailed features of faults more significantly than the original
images.
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Figure 6. Multiscale decomposition of seismic image profile along an inline from a field dataset. (a) Depth profile from original pre-stack depth mi-
gration. (b) Depth profile after multiscale decomposition at scale 2. (c) Depth profile after multiscale decomposition at scale 3. (d) Depth profile after
multiscale decomposition at scale 4. (e)Depth profile after multiscale decomposition at scale 5. (f) Depth profile after multiscale decomposition at scale
6. (g) Depth profile after multiscale decomposition at scale 7.
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